A Novel Approach for Scalable and Efficient Case Recommender System for E-Shoppers
نویسنده
چکیده
Big-Data Computing is a new critical challenge for the ICT industry. Engineers and researchers are dealing with data sets of petabyte scale in the cloud computing paradigm. Thus the demand for building a service stack to distribute, manage and process massive data sets has risen drastically. In this paper, we investigate the Big Data Broadcasting problem for a single source node to broadcast a big chunk of data to a set of nodes with the objective of minimizing the maximum completion time. These nodes may locate in the same datacentre or across geodistributed datacentres. This problem is one of the fundamental problems in distributed computing and is known to be NP-hard in heterogeneous environments. We model the Big-data broadcasting problem into a Lockstep Broadcast Tree (LSBT) problem. The main idea of the LSBT model is to define a basic unit of upload bandwidth, r, such that a node with capacity c broadcasts data to a set of ⌊ c=r⌋ children at the rate r. Note that r is a parameter to be optimized as part of the LSBT problem. We further divide the broadcast data into m chunks. These data chunks can then be broadcast down the LSBT in a pipeline manner. In a homogeneous network environment in which each node has the same upload capacity c, we show that the optimal uplink rate r of LSBT is either c=2 or c=3, whichever gives the smaller maximum completion time. For heterogeneous environments, we present an O(nlog2n) algorithm to select an optimal uplink rate r and to construct an optimal LSBT. Numerical results show that our approach performs well with less maximum completion time and lower computational complexity than other efficient solutions in literature.
منابع مشابه
A New WordNet Enriched Content-Collaborative Recommender System
The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...
متن کاملMerging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملIntelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms
Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...
متن کاملAn ontological hybrid recommender system for dealing with cold start problem
Recommender Systems ( ) are expected to suggest the accurate goods to the consumers. Cold start is the most important challenge for RSs. Recent hybrid s combine and . We introduce an ontological hybrid RS where the ontology has been employed in its part while improving the ontology structure by its part. In this paper, a new hybrid approach is proposed based on the combination of demog...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملEvaluation of recommender systems: A multi-criteria decision making approach
The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...
متن کامل